p-group, non-abelian, nilpotent (class 5), monomial
Aliases: C42.2D4, 2+ 1+4.C4, C2.9C2≀C4, C4.D4.C4, (C2×Q8).1D4, C42.C4⋊4C2, D4.9D4.1C2, C22.2(C23⋊C4), C4.4D4.1C22, C42.C22⋊5C2, (C2×D4).2(C2×C4), (C2×C4).6(C22⋊C4), SmallGroup(128,135)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.2D4
G = < a,b,c,d | a4=b4=1, c4=b2, d2=a-1b2, ab=ba, cac-1=a-1b-1, ad=da, cbc-1=a2b-1, dbd-1=a2b, dcd-1=a-1c3 >
Character table of C42.2D4
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 8A | 8B | 8C | 8D | 8E | 8F | 8G | |
size | 1 | 1 | 2 | 8 | 8 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 16 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | i | -i | -i | i | -i | i | 1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -i | i | i | -i | -i | i | -1 | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | i | -i | -i | i | i | -i | -1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -i | i | i | -i | i | -i | 1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 0 | -2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 0 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | 4 | -4 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C4 |
ρ12 | 4 | 4 | 4 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ13 | 4 | 4 | -4 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C4 |
ρ14 | 4 | -4 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 1+i | -1+i | 1-i | -1-i | 0 | 0 | 0 | complex faithful |
ρ15 | 4 | -4 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | -1+i | 1+i | -1-i | 1-i | 0 | 0 | 0 | complex faithful |
ρ16 | 4 | -4 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | -1-i | 1-i | -1+i | 1+i | 0 | 0 | 0 | complex faithful |
ρ17 | 4 | -4 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 1-i | -1-i | 1+i | -1+i | 0 | 0 | 0 | complex faithful |
(1 5)(2 12 6 16)(4 14 8 10)(11 15)
(1 11 5 15)(2 16 6 12)(3 9 7 13)(4 14 8 10)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 5)(2 14 12 8 6 10 16 4)(3 9 7 13)(11 15)
G:=sub<Sym(16)| (1,5)(2,12,6,16)(4,14,8,10)(11,15), (1,11,5,15)(2,16,6,12)(3,9,7,13)(4,14,8,10), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,5)(2,14,12,8,6,10,16,4)(3,9,7,13)(11,15)>;
G:=Group( (1,5)(2,12,6,16)(4,14,8,10)(11,15), (1,11,5,15)(2,16,6,12)(3,9,7,13)(4,14,8,10), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,5)(2,14,12,8,6,10,16,4)(3,9,7,13)(11,15) );
G=PermutationGroup([[(1,5),(2,12,6,16),(4,14,8,10),(11,15)], [(1,11,5,15),(2,16,6,12),(3,9,7,13),(4,14,8,10)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,5),(2,14,12,8,6,10,16,4),(3,9,7,13),(11,15)]])
G:=TransitiveGroup(16,398);
Matrix representation of C42.2D4 ►in GL4(𝔽5) generated by
1 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 4 |
3 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 3 | 0 |
0 | 0 | 0 | 2 |
0 | 0 | 1 | 0 |
3 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 3 | 0 | 0 |
3 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 0 | 4 |
G:=sub<GL(4,GF(5))| [1,0,0,0,0,2,0,0,0,0,2,0,0,0,0,4],[3,0,0,0,0,2,0,0,0,0,3,0,0,0,0,2],[0,3,0,0,0,0,0,3,1,0,0,0,0,0,1,0],[3,0,0,0,0,0,2,0,0,1,0,0,0,0,0,4] >;
C42.2D4 in GAP, Magma, Sage, TeX
C_4^2._2D_4
% in TeX
G:=Group("C4^2.2D4");
// GroupNames label
G:=SmallGroup(128,135);
// by ID
G=gap.SmallGroup(128,135);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,-2,-2,56,85,422,1242,745,248,1684,1411,718,375,172,4037,2028]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=1,c^4=b^2,d^2=a^-1*b^2,a*b=b*a,c*a*c^-1=a^-1*b^-1,a*d=d*a,c*b*c^-1=a^2*b^-1,d*b*d^-1=a^2*b,d*c*d^-1=a^-1*c^3>;
// generators/relations
Export
Subgroup lattice of C42.2D4 in TeX
Character table of C42.2D4 in TeX